M1.(a) M1 acidified potassium dichromate or $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{H}_{2} \mathrm{SO}_{4}$
OR $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{H}^{+} \boldsymbol{O R}$ acidified $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
M2 (orange to) green solution $O R$ goes green
M3 (solution) remains orange or no reaction or no (observed) change If no reagent or incorrect reagent in M1, CE = $\mathbf{0}$ and no marks for M1, M2 or M3
If incomplete / inaccurate attempt at reagent e.g. "dichromate" or "dichromate(IV)" or incorrect formula or no acid, penalise M1 only and mark on
For M2 ignore dichromate described as "yellow" or "red" For M3 ignore "nothing (happens)" or "no observation"

Alternative using $\mathrm{KMnO}_{4} / \mathrm{H}_{2} \mathrm{SO}_{4}$
M1 acidified potassium manganate(VII) / potassium permanganate or $\mathrm{KMnO}_{4} / \mathrm{H}_{2} \mathrm{SO}_{4}$
$O R \mathrm{KMnO}_{4} / \mathrm{H}^{+}$OR acidified KMnO_{4}
M2 colourless solution OR goes colourless
M3 (solution) remains purple or no reaction or no (observed) change For M1
If incomplete / inaccurate attempt at reagent e.g. "manganate" or "manganate(IV)" or incorrect formula or no acid, penalise M1 only and mark on
Credit alkaline KMnO_{4} for possible full marks but M2 gives brown precipitate or solution goes green
(b) M1 (Shake with) $\mathrm{Br}_{2} \mathbf{O R}$ bromine (water) $\boldsymbol{O R}$ bromine (in $\mathrm{CCl}_{4} /$ organic solvent)

M2 (stays) orange / red / yellow / brown / the same
$O R$ no reaction $O R$ no (observed) change
M3 decolourised / goes colourless / loses its colour / orange to colourless If no reagent or incorrect reagent in M1, CE = $\mathbf{0}$ and no marks for M1, M2 or M3
If incomplete / inaccurate attempt at reagent (e.g. Br), penalise M1 only and mark on
No credit for combustion observations; $\mathbf{C E}=\mathbf{0}$ For M2 in every case

Ignore "nothing (happens)"
Ignore "no observation"
Ignore "clear"

$O R$ as alternatives

Use $\mathrm{KMnO}_{4} / \mathrm{H}_{2} \mathrm{SO}_{4}$

M1 acidified potassium manganate(VII) / potassium permanganate OR $\mathrm{KMnO}_{4} / \mathrm{H}_{2} \mathrm{SO}_{4}$

OR $\mathrm{KMnO}_{4} / \mathrm{H}^{+}$OR acidified KMnO_{4}
M2 (stays) purple or no reaction or no (observed) change
M3 decolourised / goes colourless / loses its colour

Use iodine

M1 iodine or $\mathrm{I}_{2} / \mathrm{KI}$ or iodine solution
M2 no change
M3 decolourised / goes colourless / loses its colour

Use concentrated sulfuric acid

M1 concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$
M2 no change
M3 brown

> For M1, it must be a whole reagent and / or correct formula For M1 penalise incorrect attempt at correct formula, but mark M2 and M3
> With potassium manganate(VII)
> If incomplete / inaccurate attempt at reagent e.g. "manganate" or "manganate(IV)" or incorrect formula or no acid, penalise M1 only and mark on Credit alkaline / neutral KMnO gives por possible full marks but M3 precipitate or solution goes green Apply similar guidance for errors in the formula of iodine or concentrated sulfuric acid reagent as those used for other reagents.
(c) M1 Any soluble chloride including hydrochloric acid (ignore concentration)

M2 white precipitate or white solid / white suspension
M3 remains colourless or no reaction or no (observed) change or no precipitate or clear solution or it remains clear

Page 3

$O R$ as an alternative

M1 Any soluble iodide including HI
M2 yellow precipitate or yellow solid / yellow suspension
M3 remains colourless or no reaction or no (observed) change or no precipitate or clear solution or it remains clear

OR as an alternative

M1 Any soluble bromide including HBr
M2 cream precipitate or cream solid / cream suspension
M3 remains colourless or no reaction or no (observed) change or no precipitate or clear solution or it remains clear

$O R$ as an alternative

M1 NaOH or KOH or any soluble carbonate
M2 brown precipitate or brown solid / brown suspension with $\mathrm{NaOH} / \mathrm{KOH}$ (white precipitate / solid / suspension with carbonate)

M3 remains colourless or no reaction or no (observed) change or no precipitate or clear solution or it remains clear

If no reagent or incorrect reagent or insoluble chloride in M1, CE = $\mathbf{0}$ and no marks for M1, M2 or M3
Allow chlorine water
If incomplete reagent (e.g. chloride ions) or inaccurate attempt at formula of chosen chloride, or chlorine, penalise M1 only and mark on
For M2 require the word "white" and some reference to a solid. Ignore "cloudy solution" OR "suspension" (similarly for the alternatives)
For M3
Ignore "nothing (happens)"
Ignore "no observation"
Ignore "clear" on its own
lgnore "dissolves"
(d) M1 Any soluble sulfate including (dilute or aqueous) sulfuric acid

M2 remains colourless or no reaction or no (observed) change or no precipitate or clear solution or it remains clear

M3 white precipitate or white solid / white suspension
If no reagent or incorrect reagent or insoluble sulfate in M1, CE = $\mathbf{0}$ and no marks for M1, M2 or M3

Accept MgSO_{4} and CaSO_{4} but not barium, lead or silver sulfates
If concentrated sulfuric acid or incomplete reagent (e.g. sulfate ions) or inaccurate attempt at formula of chosen sulfate, penalise M1 only and mark on
For M3 (or M2 in the alternative) require the word "white" and some reference to a solid.
Ignore "cloudy solution" OR "suspension"
For M2 (or M3 in the alternative)
Ignore "nothing (happens)"
Ignore "no observation"
Ignore "clear" on its own
Ignore "dissolves"

$O R$ as an alternative

M1 NaOH or KOH
M2 white precipitate or white solid / white suspension
M3 remains colourless or no reaction or no (observed) change or no precipitate or clear solution or it remains clear

If incomplete reagent (e.g. hydroxide ions) or inaccurate attempt at formula of chosen hydroxide, penalise M1 only and mark on
If M1 uses NH_{3} (dilute or concentrated) penalise M1 only and mark on
(b) Ca (s) $+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$

State symbols essential
(c) Oxidising agent
(d) $\mathrm{Ca}(\mathrm{g}) \longrightarrow \mathrm{Ca}^{+}(\mathrm{g})+\mathrm{e}^{-}$
(e) Decrease

If answer to 'trend' is not 'decrease', then chemical error $=0$ / 3
lons get bigger / more (energy) shells
Allow atoms instead of ions

Weaker attraction of ion to lost electron

M3.(a) $\quad 0.155 \mathrm{~g}$ per $100 \mathrm{~cm}^{3}$

M1

Allow 0.153-0.157
$(0.155 / 74.1) \times 10=0.0209 \mathrm{~mol} \mathrm{dm}^{-3}$
M2
Allow 0.0206-0.0212

Answer to 3 significant figures
M3
The correct answer only loses M1
(b) Take a known volume of the saturated solution

Evaporate the filtrate to dryness
Allow titrate with dilute HCl or HNO_{3}.....

Page 6

Weigh the residue
.....of known / specified concentration
Ignore any references to indicators

$\mathrm{M} 4 . \mathrm{ZnCO}_{3} \rightarrow \mathrm{ZnO}+\mathrm{CO}_{2}$
 Ignore state symbols.
 If equation incorrect, allow one mark only for correct atom economy method.

Percentage atom economy =
Mark consequentially for incorrect formula mass(es)

$$
\frac{81.4}{125.4} \times 100=64.9
$$

Accept answer to at least 2 significant figures

M5.(a) Compound 1
If M 1 incorrect, $C E=0$
M1

No visible change with $\mathrm{H}_{2} \mathrm{SO}_{4}$
M2

Gives white ppt with NaOH
M3
(b) BaCO_{3}

The carbonate ion releases CO_{2}
(c) Compound 4
$\mathrm{Sr}(\mathrm{OH})_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{SrSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
Allow ionic equation; ignore state symbols
(b) (i) Increases / gets more reactive / reacts more vigorously / violently (down the Group)
(ii) $\mathrm{Sr}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Sr}(\mathrm{OH})_{2}+\mathrm{H}_{2}$

Credit multiples and correct ionic equations Ignore state symbols
(c) $\mathrm{Ba}(\mathrm{OH})_{2}$

This MUST be a formula so ignore the name

Credit $\mathrm{Ba}^{2+} 2 \mathrm{OH}^{-}$
Ignore state symbols

